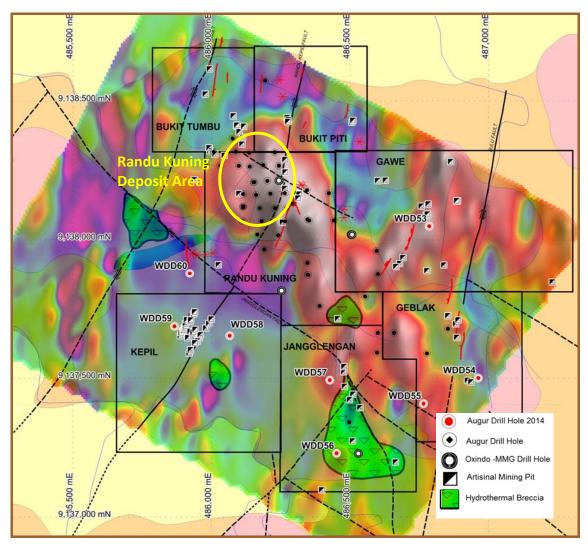


22 July 2014

The Manager Companies ASX Limited 20 Bridge Street SYDNEY NSW 2000

(20 pages by email)


Dear Madam,

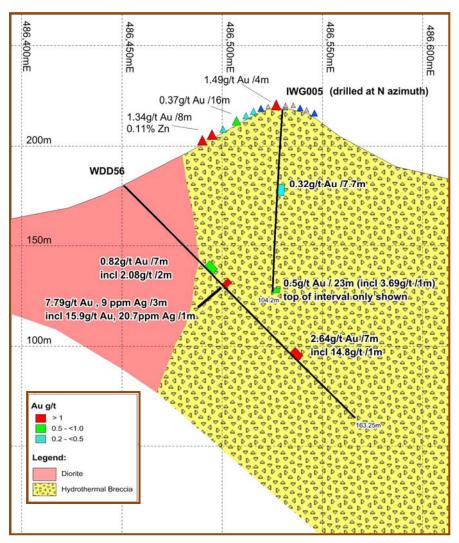
Regional drilling at Wonogiri intersects high grade epithermal gold and silver mineralisation

- Hole WDD056 intersects 3 shallow mineralised zones at Jangglengan prospect including:
 - o 7.0 metres at 0.82 g/t gold and 3.5 g/t silver from 56.0 metres including 2.0 metres of 2.08 g/t gold and 10.2 g/t silver from 56.0 metres.
 - o **3.0 metres at 7.79 g/t gold** and 9.0 g/t silver from 70.0 metres including 1.0 metre at **15.9 g/t gold** and 20.7 g/t silver.
 - 7.0 metres at 2.64 g/t gold and 1.7 g/t silver from 120.0 metres including a 1.0 metre assay of 14.8 g/t gold and 4.0 g/t silver from 122.0 metres.
- Mineralised zones at Jengglengan occur within an interpreted diatreme breccia which is notable as diatreme complexes can host significant gold deposits.
- Kepil prospect also returns shallow mineralisation in WDD057.
- Mineralised zones remain open along strike and at depth within each prospect.

The Directors of Augur Resources Ltd ('Augur' or 'the Company') are pleased to announce further results from regional drilling at its Wonogiri project in Central Java, Indonesia which have returned high grade gold +/- silver mineralisation and identified two mineralised prospects in close proximity to the main Randu Kuning Deposit for follow up drilling.

Phone: +61 2 9300 3310 Facsimile: +61 2 9221 6333 Web: www.augur.com.au

Plan map of the Wonogiri project area with the surface IP Chargeability map as the background and showing prospect areas with epithermal type veins mapped on surface (red lines) and drill holes completed as part of the current drill program.

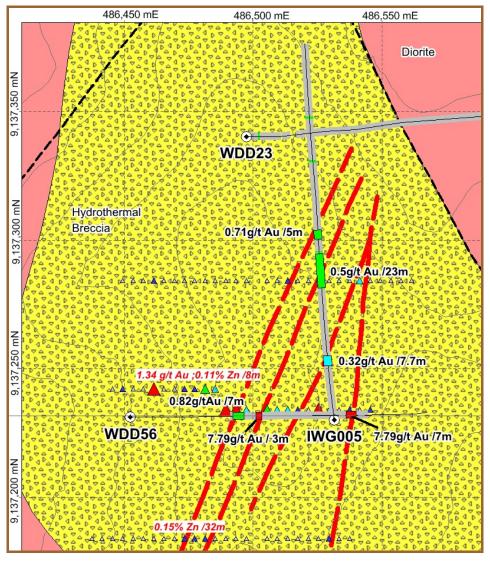

Jangglengan Prospect

Located about 1.0 kilometre south of Randu Kuning, previous exploration work in this area by Augur identified an area of exposed clay-pyrite alteration associated with gold-silver enrichment within a hydrothermal breccia host rock. Rock chip samples collected from trenches returned up to 0.32 g/t gold over 16.0 metres, including 8.0 metres of 1.34 g/t gold and 0.11% zinc.

WDD056, located about 70 metres west of an earlier hole, IWG005, drilled by PT Oxindo Exploration ('Oxindo'), was drilled towards the east to test an area of hydrothermal breccia with a coincident modelled magnetic high body.

IWG005, located about 50 metres south of the trenching carried out by Augur, was drilled towards the north, intersecting breccia and three distinct zones of gold + sulphide mineralisation associated with quartz-carbonate alteration, including 7.7 metres of 0.32 g/t gold from 42.3 metres, 23.0 metres of 0.5 g/t gold from 103.5 metres (including 1.0 metre of 3.69 g/t gold) and 5.0 metres of 0.71 g/t gold from 144.0 metres (including 2.0 metres of 1.50 g/t gold).

WDD056 returned 7.0 metres at 0.82 g/t gold and 3.5 g/t silver from 56.0 metres including 2.0 metres of 2.08 g/t gold and 10.2 g/t silver from 56.0 metres. A second zone from 70.0 metres returned 7.79 g/t gold, 9.0 g/t silver, 0.29% copper and 0.38% zinc over 3.0 metres, including 1.0 metre at 15.90 g/t gold and 20.7 g/t silver. A third zone was intersected from 120.0 metres and returned 2.64 g/t gold and 1.7 g/t silver over 7.0 metres, including 1.0 metre of 14.8 g/t gold and 4.0 g/t silver from 122.0 metres.


Interpreted geological cross section of WDD056 looking north.

Note that only partial Oxindo (IWG005) hole trace is shown in the section as it was drilled at north azimuth. Section window is 50 metres in width. Trench chip samples intervals are also shown.

The host rock type for the mineralised zones intersected in both WDD056 and IWG005 is a polymictic, hydrothermal breccia, which is interpreted to be part of a diatreme breccia complex. Mineralisation is manifest as sulphide (pyrite, sphalerite, chalcopyrite) rich stringers and veins and less commonly as matrix infill between breccia clasts.

The sulphides are associated with quartz-carbonate alteration. The presence of gold + sulphide mineralisation within an interpreted diatreme-related breccia is considered notable given that diatreme complexes in Indonesia and elsewhere can host significant gold deposits.

Augur will plan for further follow-up drilling at the Jangglengan prospect to test the continuity of the gold zones at depth and along strike.

Surface geology plan of the Jangglengan prospect area showing location of drill hole WDD056. Sites of previous trenching with channel sample assays (red italics) and location of previous drill holes by Oxindo (IWG005) and Augur (WDD023). Compiled significant assays from drill core assays are indicated (bold). Interpreted trend of mineralised zones are shown by dashed red lines.

Kepil Prospect Area

Holes WDD058 and WDD059 were drilled at the Kepil prospect which is located approximately 500 metres southwest of Randu Kuning.

WDD058 intersected significant copper mineralisation including 36.0 metres at 0.28% copper from 25.0 metres.

WDD059 was drilled to test an area of clay-pyrite alteration and local mining activity. This hole intersected a shallow 6.0 metre wide zone of 0.83 g/t gold from 36.0 metres. In addition, several other lower grade (0.20 to 0.30 g/t gold) intercepts were also noted. Mineralisation occurs within a structurally controlled, quartz-carbonate and sulphide (pyrite, sphalerite) zone within intensely argillic altered diorite.

With significant mineralisation intersected in the first two holes at Kepil, additional drilling of targeted extensions of mineralised zones is planned.

Other Target Areas

Six further holes have been completed to test several areas of structurally controlled, quartz vein/alteration zones typical of low-sulphidation, epithermal type mineralisation. With the exception of several narrow (1.0 to 3.0 metres), low grade gold intercepts (<0.5 g/t gold) no significant gold mineralisation was intersected. However given that such veins systems can vary in width and grade dramatically along strike, further assessment of the results is ongoing. Additional drilling will be completed as warranted.

Hole	Prospect	Easting	Northing	RL	Dip	Azimuth (Mag)	Total Depth (m)	From (m)	To (m)	Interval (m)	Gold (g/t)	Silver (g/t)
WDD053	Gawe	486785	9138051	184	45	270	173.9		No	significant inte	rsection	
WDD054	Geblak	486962	9137503	187	45	270	230.7	•	No	significant inte	rsection	
WDD055	Geblak	486765	9137411	216	45	90	151.2		No	significant inte	rsection	
WDD056	Jangglengan	486270	9138112	200	45	90	163.2	56.0	63.0	7.0	0.82	3.5
		including						56.0	58.0	2.0	2.08	10.2
		and						70.0	73.0	3.0	7.79	9.0
		including						71.0	72.0	1.0	15.90	20.7
		and			•			120.0	127.0	7.0	2.64	1.7
		including						122.0	123.0	1.0	14.80	4.0
WDD057	Jangglengan	486426	9137495	198	45	90	185.5	-	No	significant inte	rsection	
WDD058	Kepil	485065	9137651	199	45	90	190.0	-	No	significant inte	rsection	
WDD059	Kepil	485861	9137679	182	45	90	148.5	36.0	42.0	6.0	0.82	3.3
		including						38.0	40.0	2.0	1.10	3.4
WDD060	Bukit Gede	485921	9137880	178	45	90	167.5	36.0	38.0	2.0	0.90	0.8
		and						150.0	152.0	2.0	0.86	<0.5

Wonogiri Project

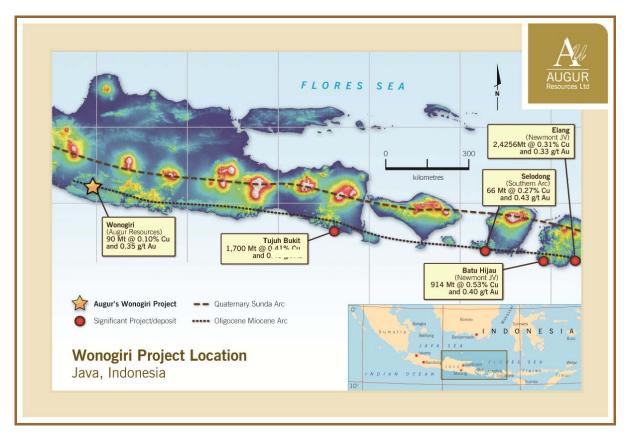
The Wonogiri project is located approximately 30 kilometres to the south of the provincial city of Solo in central Java and is easily accessible by daily flights from the capital Jakarta and a short one hour drive by car on a sealed road.

A total of 18, 026 metres of drilling in 60 diamond drill holes have been completed at the Wonogiri project. Forty four of these (12,462 metres) have been drilled at the Randu Kuning prospect area. Average drill depths were 318.0 metres with hole depth ranging from 157.6 to 855.0 metres. This work has defined a JORC compliant mineral resource of 1.54 million ounces of gold at a 0.2 g/t gold equivalent ('AuEq') cut-off (90.9 million tonnes at 0.53g/t Au Eq)¹.

Resource Class	Tonnes (million)	AuEq (g/t)	Au (g/t)	Cu (%)	AuEq (million ounces)	Au (million ounces)	Cu (million pounds)	Cut off (AuEq g/t)
Measured	28.3	0.84	0.56	0.15	0.765	0.513	132.7	0.2
Indicated	5.3	0.66	0.45	0.11	0.113	0.078	42.8	0.2
Inferred	57.1	0.36	0.23	0.07	0.660	0.423	22.9	0.2
Total	90.9	0.53	0.35	0.10	1.538	1.014	199.6	0.2

Resource estimate of the Randu Kuning deposit within the Wonogiri project.

In March 2014, Augur announced the results of a scoping study of the Randu Kuning deposit located. Highlights of the scoping study undertaken by Australian Mine Design and Development Pty Ltd ('AMDAD') (note cautionary statements on the following page) included:


- Randu Kuning deposit generating a life of project positive net cash flow of US\$143 million undiscounted, or US\$102 million when a 5% discount factor is applied (excluding contingency) for relatively low capital expenditure.
- Open cut mine delivering approximately 9 years of production at 1.74 to 2.00 million tonnes per annum Mtpa at 0.61 g/t Au and 0.16% Cu.
- Life of mine production of 283,000 ounces of gold and 236,000 tonnes of copper in concentrate, or 426,000 ounces AuEq² at an average C1 cash cost³ of US\$786 per ounce AuEq using US\$1,250 per ounce Au and US\$7,900 per tonne Cu.
- Low preliminary capital expenditure estimate of **US\$56 million** (excluding contingency) to build a second hand plant and associated infrastructure costs due to excellent infrastructure and good access.

- Low strip ratio of **1.79** : **1.00**.
- Total current Randu Kuning resource estimate is 90.9 million tonnes at 0.35 g/t Au and 0.10% Cu.
- Randu Kuning deposit remains open at depth and to the east, south and west with significant opportunity to expand the current resource and test other regional targets.

Scoping Study Cautionary Statements

The Company cautions that production and cash flow estimates presented in the scoping study are indicative only. The following should be considered:

- Although the Randu Kuning Measured and Indicated resource categories exceed
 the scoping study production target, the mill feed schedule includes a proportion
 of Inferred category material which has a low level of geological confidence and
 no certainty that further exploration work will result in the determination of
 Indicated resources or that the production target will be realised.
- The mining loss and dilution estimates have not been assessed in detail against the deposit geometry.
- Pit optimisations and designs use assumed pit wall slopes. No geotechnical analyses have yet been undertaken.
- Process recoveries are extrapolated from limited test work results.
- The available metallurgical test work was done on a small composite with grades well in excess of the likely mill head grades for the project.
- Mining costs have not been developed in detail, although they have been reviewed by Leighton Contractors Indonesia.
- Process operating costs are based on a USA cost database. While adjustments
 have been made for local conditions, AMDAD is a mining engineering
 consultancy and cannot accept responsibility for their accuracy.

Wonogiri project location and major porphyry deposits on the Oligocene-Miocene Arc.

For further information, please contact Peter Nightingale on +61 2 9300 3310.

Yours sincerely

Peter J. Nightingale Director

pjn7779

Statement of Compliance

The information in this report that relates to Mineral Exploration is based on information compiled by Augur staff and contractors and approved by Mr Michael Corey PGeo., who is a Member of the Association of Professional Geoscientists of Ontario (APGO) in Canada. Michael Corey is a full-time employee of Augur Resources and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Michael Corey has consented to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to the Mineral Resources is based on information compiled by Augur staff and contractors and approved by Michael Corey PGeo., who is a Member of the Association of Professional Geoscientists of Ontario (APGO) in Canada. Michael Corey is a full-time employee of Augur and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Michael Corey has consented to the inclusion in this report of the matters based on his information in the form and context in which they appear.

Information regarding the mineral resource was prepared and first disclosed under the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. It has not been updated since to comply with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' on the basis that the Company is not aware of any new information or data that materially affects the information and, in the case of the resource estimate, all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed.

¹ Gold Equivalent Calculation relating to the Wonogiri Resource

Where reported in relation to the Wonogiri mineral resource estimate, Gold Equivalent results are calculated using a gold price of US\$1,198/oz and a copper price of US\$6,945/t. Silver is excluded from the gold equivalent calculation as no metallurgical testing of the recovery properties of silver from this project has occurred. In calculating Gold Equivalents for the drill results in the table above, gold and copper recoveries are assumed to be 100%. As previously reported, metallurgical testing has resulted in mean recoveries from sulphide material of over 82.5% for gold and 94% for copper. It is the Company's opinion that all metals used in the equivalent calculation have a reasonable potential to be recovered in the event that material from the Wonogiri project was to undergo processing.

The gold equivalent calculation used is AuEq(g/t) = Au(g/t) + ((Cu(%)*6,945)/38.51).

(i.e.: 1.0% Cu = 1.80 g/t Au)

² Gold Equivalent Calculation relating to the Scoping Study

Where reported in relation to the Wonogiri scoping study, Gold Equivalent results are calculated using a gold price of US\$1,250/oz and a copper price of US\$7,900/t. Silver is excluded from the gold equivalent calculation as no metallurgical testing of the recovery properties of silver from this project has occurred. In calculating Gold Equivalents for the drill results in the table above, gold and copper recoveries are assumed to be 100%. As previously reported, metallurgical testing has resulted in mean recoveries from sulphide material of over 82.5% for gold and 94% for copper. It is the Company's opinion that all metals used in the equivalent calculation have a reasonable potential to be recovered in the event that material from the Wonogiri project was to undergo processing.

The gold equivalent calculation used is AuEq(g/t) = Au(g/t) + ((Cu(%)*7,900)/40.19).

(i.e.: 1.0% Cu = 1.97 g/t Au)

³ C1 cash costs

The costs of mining, milling and concentrating, onsite administration and general expenses, property and production royalties not related to revenues or profits, metal concentrate treatment charges, and freight and marketing costs less the net value of the by-product credits.

ATTACHMENT 1

Table A1 – Wonogiri Project Summary of Significant Drill Hole Intersections Related to ASX Announcement dated July 2014

Hole	iri Significan Prospect	Easting	Northing	RL	Dip	Λzm	Total Depth	From	То	Interval	Gold g/t	Copper%	AuEq
WDD01		486264.3	9138167	228.42	4 5	Azm 90		8.2	67.3	59.1	1.31	0.30	1.8:
WDD01	Randu Kuning Randu Kuning	486290	9138130	223.58	45	90	210.1 186.4	0.2	47	47	1.28	0.30	1.75
WDD03	Randu Kuning	486264.6	9138065	189.06	45	90	157.6	0		22.5	0.62	0.18	0.94
WDD03	Randu Kuning	486270	9138112	207.52	45	90	163.5	5.5	43	37.5	1.21	0.18	2.00
VV DD04	Kandu Kunnig	400270	3136112	207.32	40	and	100.0	50	54	37.3	0.45	0.43	1.2
WDD05	Randu Kuning	486212.4	9138165	196.99	45	90	193	14	119.5	105.5	0.45	0.43	1.38
WDD06	Randu Kuning	486228.4	9138113	196.68	45	90	224	0	37.5	37.5	0.65	0.13	0.88
***************************************	randa karing	40022014	3100110	150.00	-10	and	LLT	49.5	97.5	48	1.45	0.26	1.92
						and		129.5	135.5	6	1.20	0.32	1.78
WDD07	Randu Kuning	486181	9138066	163.73	45	90	215.1	30	49.5	19.5	0.49	0.25	0.94
	Ĭ					and		53.5	113.5	60	0.85	0.30	1.39
						and		133	142	9	0.39	0.18	0.73
						and		148	151	3	0.51	0.23	0.92
					`	and		160.5	177.5	17	0.56	0.14	0.81
						and		183.5	196.5	13	0.60	0.19	0.94
						and		199.5	214	14.5	0.55	0.15	0.82
WDD08	Randu Kuning	486173.4	9138113	180.14	45	90	306.1	50.5	56.5	6	1.08	0.22	1.48
						and		59.5	149.5	90	0.93	0.21	1.31
						and		153.5	237.5	84	1.29	0.26	1.76
						and		242.5	258.5	16	0.41	0.12	0.63
WDD09	Randu Kuning	486112.4	9138066	165.19	45	90	305.6	4.5	6.0	1.5	1.39	0.03	1.44
						and		88.5	89.5	1.0	0.30	0.20	0.66
						and		100.5	207.5	107.0	0.73	0.19	1.07
						includes		122.5	133.5	11.0	1.07	0.29	1.59
						includes		150.5	187.5	37.0	1.16	0.22	1.56
						and		215.5	223.5	8.0	0.33	0.07	0.46
						and		234.5	243.5	9.0	0.26	0.05	0.35
						and		255.5	305.6	50.1	0.74	0.15	1.01
IMPD40	Dan da Karatan	4004000	0430460	467.00	45	includes	222.5	278.5	303.5	25.0	1.03	0.23	1.44
WDD10	Randu Kuning	486160.6	9138160	167.89	45	90	322.5	50	163	113	1.52	0.23	1.93
WDD44	Dan de Kenta	400400 0	04 2004 0	140.4	45	and 90	250.5	212	261	49	1.28	0.21	1.66
WDD11 WDD12	Randu Kuning Randu Kuning	486165.3 486153.7	9138018 9138207	149.1 165.74	45 45	90	250.5 364.6	No signific	76	7	0.38	0.13	0.61
WDD12	Nandu Kunnig	400133.7	3130207	103.74	45	and	304.0	80	108	28	0.58	0.13	0.95
						and		111	177	65	0.59	0.14	0.84
						and		179	201	22	0.43	0.10	0.61
						and		213	216	3	0.71	0.15	0.98
						and		220	231	11	0.39	0.12	0.61
						and		238	250	12	0.43	0.16	0.72
						and		253	257	4	0.45	0.19	0.79
						and		276	280	4	1.27	-	1.27
WDD13	Randu Kuning	486190	9137964	144.73	45	90	232.4	9		1	0.45	-	0.45
						and		38.5	39	0.5	3.32	-	3.32
						and		72	74	2	0.58	-	0.58
WDD14	Randu Kuning	486240.2	9138015	161.5	45	90	210.8	151	152	1	0.38	0.21	0.76
						and		157	158	1	0.63	-	0.63
WDD15	Randu Kuning	486137.7	9138264	150.78	45	90	365.3	69	189	120	0.96	0.21	1.34
WDD16	Randu Kuning	486115	9138120	166.76	45	90	354.2	76	199	123	0.61	0.14	0.86
WDD18	Randu Kuning	486113	9138120	166.46	60	90	384.45	73	209	136	0.48	0.14	0.73
						includes		278	384.5	106.5	0.64	0.10	0.82
WDD019	Randu Kuning	486264.3	9138167	228.42	70	90	210.1	41	136.5	95.5	0.74	0.16	1.03
						includes		82	87	5	5.08	0.50	5.98
WDD20	Randu Kuning	486114	9138164	153.02	50	90	395.5	43	139	96	0.54	0.13	0.77
						and		246	275	29	0.63	0.10	0.81
WDD21	Randu Kuning	486098	9138266	148.79	50	90	410.3	45.5	177.5	132	0.75	0.17	1.06
WDD30	Randu Kuning	486429.1	9138166	166.79	60	270	854.95	171	238	67	0.68	0.19	1.02
						and		245	363	118	0.75	0.13	0.98
WDD31	Geblak	486658.5	9137663	224.15	60	90	280	38	53	15	0.60	-	0.61
WDD32	Jangglengan	486391.4	9137760	176.4	60	130	255.6	84	106	22	0.33	-	0.33
WDD33	Randu Kuning	486249.9	9138216	207.7	45	90	222.75	47	48.5	1.5	0.30	0.41	1.04
						and		124	125	1	1.29		1.29

	Hole	Prospect	Facting	Northing	RL	Dip	Azm	Total Depth	From	То	Interval	Gold a/t	Conner %	AuEq
WODS Cabina Woods Wood														
WOD316 Seahuk Kuring 486246 5913788 230.48 60 270 322.6 261 267 6 1.05													-	
WOD28 Randu Kuning 486204.5 9138214 188.24 45 90 205 30 31 1 0.95 0.02 0.02 0.03													-	
WDD90 Gawe							90					0.59	0.02	
MODAU ABSISS 18828 164.00 45 50 251.4 24 25.5 1.5 0.92 0.02							and		151		1	0.35	0.01	0.37
WOD40	WDD39	Gawe	486564.5	9137880	230.53	50	90	289.6	27	27.5	0.5	3.35	-	3.35
WOD40 Randu Kuning 486186 5 3138267 164.08 45 50 251.4 24 25.5 1.5 0.92 0.92													-	
Model Mode													-	
Model Mode	WDD40	Randu Kuning	486186.5	9138267	164.03	45		251.4					- 0.45	
WDD41 Geblak 486597, 9137589 198.89 60 90 253.6 88 90 2 0.44 0.46 0														
MOD41 Gebiak 486597,7 9137889 198.89 60 90 253.6 88 90 2 0.44 0.44 0.45 0.47														
WDD41 Geblak 486597,7 9137589 198.89 60 90 253.6 88 90 2 0.44 .0.44														
MOD42 Randu Kuning 486306 918211 180.66 45 90 298.5 120 110 40 0.31 0.38 0.29 0.29							includes		179	180	1	1.6	0.67	2.81
MDD42 Randu Kuning 486006 9138211 189.66 45 90 298.5 120 100 40 0.31 0.29 0.25 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.25 0.29	WDD41	Geblak	486597.7	9137589	198.89	60	90	253.6	88	90		0.44	-	0.44
MDD42 Randu Kuning 486206 9138211 189.66 45 90 2286.5 120 160 40 0.31 0.13 0.54							and		99			0.26	-	
WDD42 Randu Kuning													-	
WDD42 Randu Kuning													-	
MOD48 Randu Kuning 486418.8 9138178 190.48 60 270 600.8 156 445 289 0.48 0.49 0.49	M/DD 43	Danielo Konstra	406206	0420244	100.66	45		200.5					- 0.43	
MOD43 Gawe	WDD42	kandu Kuning	486206	9138211	189.66	45		298.5						
MOD45 Gawe													0.10	
WDD43 Gawe													0.15	
WDD44 Geblak													-	
WDD44 Geblak	WDD43	Gawe	486563.3	9137812	204.38	60		282.1					-	
MOD45 Randu Kuning 486418.8 9138068 200.88 60 270 600.8 156 445 289 0.48 0.11 0.06							and				3.7	0.55	-	
MDD48 Randu Kuning 486418.9 9138178 190.43 50 270 411.6 96 184 88 0.53 0.15 0.46	WDD44	Geblak	486614	9137667	203.08	60	90	269.6	68	71	3	1.29	-	1.29
MDD45 Randu Kuning A86418.8 913806 200.88 60 270 600.8 156 445 289 0.48 0.11 0.68 0.69 0.09 0.							and		82	87	5	0.25	-	0.25
MDD45 Randu Kuning 486418.8 9138068 200.88 60 270 600.8 156 445 289 0.48 0.11 0.68							and		122		2	0.40	-	0.40
MDD45 Randu Kuning 486418.8 9138068 200.88 60 270 600.8 155 445 229 0.48 0.11 0.68													-	
MDD45 Randu Kuning 486418.8 9138068 200.88 60 270 600.8 156 445 289 0.48 0.11 0.68													-	
WDD45 Randu Kuning 486418.8 9138068 200.88 60 270 600.8 156 445 289 0.48 0.11 0.68 WDD48 Randu Kuning 486343.9 9138178 190.43 50 270 411.6 96 184 88 0.53 0.15 0.80 WDD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 - 0.26 WDD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 - 0.26 WDD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 0.26 WD449 Randu Kuning 486111 9138119 166.15 7 90 625.4 23 25 2 0.26 0.26 460 1 480 480													-	
MDD48 Randu Kuning 486343.9 9138178 190.43 50 270 411.6 96 184 88 0.53 0.15 0.80	W/DD4E	Bandu Kuning	106110 0	0120060	200.00	60		600.0					0.11	
WDD48 Randu Kuning 486343.9 9138178 190.43 50 270 411.6 96 184 88 0.53 0.15 0.80 WDD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 . 0.26 WD4 Amount of the common of the comm	WDD45	Kanuu Kuning	400410.0	9136006	200.00	60		000.8						
WDD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 - 0.26 WDD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 - 0.42 WD49 Randu Kuning 486111 9138119 166.15 75 90 625.4 23 25 2 0.26 - 0.42 0.42 0.42 0.42 0.42 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.50 0.44 0.50 0.44 0.50 0.44 0.50 <	WDD48	Randu Kuning	486343.9	9138178	190.43	50		411.6						
A													-	
And And		J											-	
A							and		67	94	27	0.23	0.10	0.41
And And							and		100	108	8	0.31	0.13	0.54
A							and							
And And														
A													0.12	
And And													- 0.11	
And And														
A													0.12	
Includes Salar S													_	
A													-	
Second Registration											20		0.11	
March Marc							includes		348.9	350.9			0.70	2.89
Mode													-	
WDD50 Randu Kuning 486352.1 9138068 208.51 50 270 210.1 106.0 210.1 104.1 1.08 0.25 1.53 WDD51 Randu Kuning 486112.4 9138068 165.19 45 90 388.15 368.7 373.0 4.3 0.99 0.06 1.10 WDD52 Randu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16 0.86 WDD52 Randu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16 0.86 WDD52 Randu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16 0.86 WDD52 Amalu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16													-	
WDD51 Randu Kuning 486112.4 9138066 165.19 45 90 388.15 368.7 373.0 4.3 0.99 0.06 1.10 WDD52 Randu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16 0.86 WDD52 Randu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16 0.86 WDD52 Amaly Amaly 275.0 314.0 38.0 0.29 0.09 0.45 Amaly Amaly 326.0 332.0 6.0 0.30 0.21 0.68 Amaly Amaly 340.0 344.0 4.0 0.26 0.12 0.48 Amaly Amaly 357.0 365.0 8.0 0.27 0.12 0.49	WD5-50	D 1 // 1	105577	042225	262 7								-	
Includes 368.7 369.7 1.0 2.78 0.20 3.14														
WDD52 Randu Kuning 486352.1 9138068 208.51 50 270 384.05 210.1 271.0 60.9 0.57 0.16 0.86 Image: Control of the contr	WDDSI	randu Kuning	480112.4	9138066	165.19	45		388.15						
includes 210.1 228.0 18.9 1.01 0.16 1.30 and 275.0 314.0 38.0 0.29 0.09 0.45 and 326.0 332.0 6.0 0.30 0.21 0.68 and 340.0 344.0 4.0 0.26 0.12 0.48 and 357.0 365.0 8.0 0.27 0.12 0.49	WDD52	Randu Kuning	486352.1	9138068	208 51	50		38/1 05						
and 275.0 314.0 38.0 0.29 0.09 0.45 and 326.0 332.0 6.0 0.30 0.21 0.68 and 340.0 344.0 4.0 0.26 0.12 0.48 and 357.0 365.0 8.0 0.27 0.12 0.49	110032		100332.1	3130000	200.31	30		304.03						
and 326.0 332.0 6.0 0.30 0.21 0.68 and 340.0 344.0 4.0 0.26 0.12 0.48 and 357.0 365.0 8.0 0.27 0.12 0.49														
and 340.0 344.0 4.0 0.26 0.12 0.48 and 357.0 365.0 8.0 0.27 0.12 0.49													-	
										344.0				
and 375.4 383.0 7.6 0.21 0.09 0.37							and					0.27	0.12	0.49
							and		375.4	383.0	7.6	0.21	0.09	0.37

Hole	Prospect	Easting	Northing	RL	Dip	Azm	Total Depth	From (m)	To (m)	Interval	Gold g/t	Ag ppm
WDD056	Jangglengan	486270	9138112	200	45	90	163.25	56	63	7	0.82	3.5
						includes		56	58	2	2.08	10.2
						and		70	73	3	7.79	9.0
						includes		71	72	1	15.90	20.7
						and		120	127	7	2.64	1.7
						includes		122	123	1	14.80	4.0
WDD059	Kepil	485861	9137679	182	45	90	148.5	36	42	6	0.82	3.3
						includes		38	40	2	1.10	3.4
WDD060	Bukit Gede	485921	9137880	178	45	90	167.55	36	38	2	0.90	0.8
						and		150	152	2	0.86	<0.5

ATTACHMENT 2

JORC Code, 2012 Edition - Table 1 report Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drill core was logged by geologists for major lithological units and alteration zones to determine sampling intervals. All sample intervals were marked by core blocks, entered into a ledger and assigned a unique sample number. After cutting and sampling detailed logging continued using standardized forms which were entered into the database and verified daily. Diamond drill core samples are collected from electric saw cut half core at intervals generally either 1.0 metre or 2.0 metres. At the site office the core boxes were weighed and photographed (wet and dry), logged, and then marked-up for half-core cutting and sampling by trained technicians. All work was directly supervised by the Site Geologist. Samples were oven dried at 105°C, weighed then jaw crushed to 95% <2mm. A 1.5 kg subsample was riffle spit for pulverizing to 95%<200#. Two splits were taken from this product, one for analysis the other for QAQC. Samples were analysed for gold using method FA51, a lead collection fire assay using a 50g charge with an AAS finish. Base metals contents were estimated by method IC01, which used an aqua regia digest with ICP-OES finish.
Drilling techniques	• Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drill including PQ, HQ and NQ core collection utilizing standard tripletube wire line equipment. Holes are surveyed upon completion using a downhole camera.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Core was cut in half using an electric powered, water cooled diamond blade core cutter located at the site office. Core samples were cut carefully to minimise breakage and to prevent parts of the sample being washed away during cutting. Core intervals that were clay rich and broken or friable were not cut but representatively sampled by spatula and spoon.
		• Drilling supervisors informed prior to start of hole where intersection expected.
		 Half core was bagged according to the sample specifications. PQ core was generally sampled in 0.5 metre lengths whilst HQ and NQ core was sampled in 1 metre lengths where mineralised and 2 metre lengths elsewhere. Sampling intervals were constrained to major lithologic boundaries.
		 There is no significant relationship between recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Diamond drill core was logged by geologists for lithological units and alteration zones and structural features to determine sampling intervals. All sample intervals were marked by core blocks, entered into a ledger and assigned a unique sample number. After cutting and sampling detailed logging continued using standardized forms which were entered into the database and verified daily. Core logging is both qualitative and quantitative. Core is logged descriptively and codes are used to describe alteration type/ intensity, quartz type and intensity as well as various percentages of minerals. Structural data including veins, shears, fractures are recorded relative to the core axis. Core recovery and RQD are recorded in the Geotechnical log. The average core recovery from 60 drillholes (metres) is 96%. Recoveries of less than 90% are (depending on the cause of reduced recovery) redrilled to obtain better recovery if necessary. At the site office the core boxes were weighed and photographed (wet and dry), logged, and then marked-up for half-core cutting and sampling by trained technicians. All work was directly supervised by the Site Geologist.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selected core, based on lithology, alteration and visible mineralization was cut in half using an electric powered, water cooled diamond blade core cutter located at the site office. Half core samples are collected at 1m or in some cases 2 metre intervals. In some cases where 2m sample assays were considered significant (>0.5g/t) the same interval was resampled at 1m intervals using quarter core. Blanks and/or independent standards are used in each sample batch at approximately each 10 sample interval. Standards were purchased from Ore Research & Exploration Pty Ltd [Bayswater North, Australia]. At the Intertek laboratory samples were oven dried at 105°C, weighed then jaw crushed to 95% <2mm. A 1.5 kg subsample was riffle spit for pulverizing to 95%<200#. Two splits were taken from this product, one for analysis the other for QAQC. Samples were analysed for gold using method FA51, a lead collection fire assay using a 50g charge with an AAS finish. Base metals contents were estimated by method IC01, which used an aqua regia digest with ICP-OES finish.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assaying is completed by PT Intertek Utama Services in Jakarta, a subsidiary of Intertek Group Inc. (accredited for chemical testing under ISO/ICE 17025:2005). A structured Quality-Assurance-Quality- Control program has been conducted during all drill phases. The program has consisted of regular submission of blanks and prepared standards and comparative sample runs with other laboratories. Standards were purchased from Ore Research & Exploration Pty Ltd [Bayswater North, Australia] Assays falling outside of acceptable ranges are re-assayed. Intertek Laboratories also carry out routine internal quality control, and review of this data suggests there are no issues with either precision or accuracy. Separate groups of mineralised sample pulps are sent on a routine basis to other accredited laboratories in Jakarta to test for laboratory scale systematic errors.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 In 2011 the company arranged for renowned consultant Mr Greg Corbett to review the geological /deposit model and also evaluate the assay database and QAQC protocols.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 As the drilling to date has been entirely by diamond drill no twinned holes have been completed. It is expected that some number of twinned holes will be completed as part of the proposed feasibility study.
		 All field and laboratory data is entered into an Excel database with QA/QC templates included.
		 No adjustments to the assay data has occurred.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Initially collars are located with hand held GPS devices. Drill collar elevations and hole locations are later recorded with differential GPS equipment by a licenced
	 Specification of the grid system used. 	surveyor.
	Quality and adequacy of topographic control.	 The mapping grid is WGS 84, Zone 49 South. Topographic control is by Lidar survey and differential GPS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Core samples are generally taken over 1m intervals from surface to the end of hole. Drill holes vary from 50 metres to 100 metres apart. Holes were drilled due East and due West across apparent preferred orientations of mineralization and controlling structural features. Varigraphy and kriging were used to produce a resource block model in support of an initial JORC compliant mineral resource estimate completed by Computer Aided Geoscience Pty Limited and reported by the company in September 2012. Based on drill density and the quality of the exploration database the resource within the modeled gold and copper zones was categorized at Measured or Indicated based on the interpolation parameters used to estimate the block grade. Mineralisation outside of the modelled zones is categorized as Inferred. Some composite samples were made based
		on Au grades to provide representative material for metallurgical testing. The testwork was completed by ALS Ammtec in Perth and results were reported by the company in May 2012.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Holes were drilled to obtain representative mineralised intersections across interpreted structural controlling features. The structures are interpreted to be subvertical and trending generally northeast /northwest/north. As such drillholes were drilled either due East or due West with declinations of -40 -65 degrees. No oriented drill holes have been completed so reported widths are downhole or apparent widths and not true widths. Based on current interpretation the reported widths are likely to be some degree wider than the true widths.
Sample security	The measures taken to ensure sample security.	Sample batches were packed into sealed and annotated rice sacks and road transported by the company to the Intertek laboratory in Jakarta. Samples were subjected to full security from drilling through processing till delivery to the laboratory. Intertek standard sample submission forms were cross-checked with Sample Receipt Confirmation notes issued by the Laboratory. Laboratory results were emailed to the site office as well as the corporate offices in Jakarta and Sydney.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling and assay database were audited and validated in 2012 during preparation of the initial mineral resource estimate. The current drilling program is the first to occur since the 2012 resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The 3,928 hectare Wonogiri Property tenure is under the Indonesian National Izin Usaha Pertambangan or Mining Business License (IUP) system. The Wonogiri IUP (545.21/054/2009) is held 100% by PT Alexis Perdana Mineral ('Alexis'). Augur's subsidiary, Wonogiri Pty Ltd, directly holds a 90% interest in Alexis. The IUP is currently in the Exploration Stage and must be converted to an Exploitation license by January 2015. There are no forestry restrictions over the IUP nor any social or environmental issues known.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The Wonogiri property was previously explored by Oxindo a wholly-owned subsidiary of MMG Ltd during 2009-2010. Oxindo completed surface mapping, sampling and a ground magnetic survey followed by drilling of 5 holes (1,996.3 metres) to test porphyry Cu-Au targets. Although the drilling confirmed the presence of porphyry-type mineralization within the Randu Kuning prospect area the resource potential was deemed too small. The property was JV to Augur in 2011.
Geology	 Deposit type, geological setting and style of mineralisation. 	The Wonogiri property is host to porphyry-type copper-gold mineralization at the Randu Kuning deposit and also associated low sulphidation epithermal type, quartz vein hosted gold mineralization in adjacent prospect areas. The property lies within the tectonically complex Sunda-Banda Magmatic Arc which hosts the world-class Batu Hijau and Tujuh Bukit porphyry copper-gold deposits.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	See Table A1 in Attachment 1 in this announcement.
	o easting and northing of the drill hole collar	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Aggregate (compiled) significant intersections reported are based on assays utilizing a cut-off of 0.2 g/t gold and/or 0.2% copper with a maximum contiguous dilution interval of 4.0 metres. The intervals reported are downhole intervals and reported assays are averages for the interval and unless otherwise stated are not weighted averages. Use of weighted averages were not deemed necessary given that sampled lengths and core sizes were the same. Reported intervals of higher grades (≥1.0 g/t) within a wider lower grade interval are stated using the same parameters and are included in order to denote the tenor of interpreted primary, structurally controlled feeder zones. Where reported, Gold Equivalent (Au Eq) results are calculated using a gold price of US\$1,198/oz and a copper price of US\$6,945/t. Silver is excluded from the gold equivalent calculation as no metallurgical testing of the recovery properties of silver from this project has occurred. In calculating Gold Equivalents for the drill results, gold and copper recoveries are assumed to be 100%. As previously reported, metallurgical testing has resulted in mean recoveries from sulphide material of over 82.5% for gold and 94% for copper. It is the Company's opinion that all metals used in the equivalent calculation have a reasonable potential to be recovered in the event that material from the Wonogiri project was to undergo processing. The gold equivalent calculation used is AuEq (g/t) = Au (g/t) + ((Cu (%)*6,945)/38.51); (i.e.: 1.0% Cu = 1.80 g/t Au)
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, 	 No oriented drill holes have been completed so reported widths are downhole or apparent widths and not true widths. Based on current interpretation the reported widths are likely to be some degree wider than the true widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Pertinent maps and sections are included.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Reporting is fully representative of the data.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All data is fully reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The results reported are from the first 2 holes of a planned 3,000 drill program. Drilling is currently tested epithermal veins targets immediately adjacent to the Randu Kuning deposit area.

Section 3 does not apply as the information regarding the mineral resource was prepared and first disclosed under the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. It has not been updated since to comply with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' on the basis that the Company is not aware of any new information or data that materially affects the information and, in the case of the resource estimate, all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. Section 4 does not apply as reserve estimates are not being disclosed at this time and Section 5 does not apply as this section relates to the reporting of diamonds and other gemstones.